O que é um gráfico EWMA O que é um gráfico EWMA Um gráfico de controle EWMA é um gráfico de controle ponderado no tempo que traça as médias móveis ponderadas exponencialmente. Os gráficos EWMA são especialmente adequados para monitorar processos que exibem uma média de derivação ao longo do tempo, ou para detectar pequenas mudanças em um processo. Por exemplo, um gráfico EWMA pode ajudar a detectar a deriva causada pelo desgaste da ferramenta. Exemplo de um gráfico EWMA Um fabricante de rotores de centrífuga quer acompanhar o diâmetro de todos os rotores produzidos durante uma semana. Os diâmetros devem estar próximos do alvo, porque mesmo pequenas mudanças causam problemas. Gráfico EWMA Os pontos estão dentro dos limites de controle. Não são apresentadas tendências ou padrões. Os diâmetros do rotor parecem estáveis. O que são pontos plotados com base em Os pontos do enredo podem ser baseados em subgrupos ou observações individuais. Quando os dados estão em subgrupos, as médias móveis ponderadas exponencialmente são calculadas a partir dos meios do subgrupo. Quando você traça observações individuais, as médias móveis ponderadas exponencialmente são calculadas a partir das observações individuais. Por padrão, a faixa de movimento é de comprimento 2, pois os pontos consecutivos têm a maior chance de serem iguais. Você também pode alterar o comprimento do alcance móvel. Diretrizes para selecionar o peso de um gráfico EWMA Os cálculos para cada ponto em um gráfico EWMA incluem informações dos pontos anteriores. Os pontos são ponderados com base em um fator de ponderação especificado pelo usuário. Uma vantagem dos gráficos EWMA é que eles não são muito afetados quando um valor pequeno ou grande entra no cálculo. Ao alterar o peso (também chamado de lambda ou) e a largura dos limites de controle, você pode detectar uma mudança de quase qualquer tamanho. Por isso, os gráficos EWMA são freqüentemente usados para monitorar processos de controle para pequenos deslocamentos para longe do alvo. Normalmente, você usa pesos menores para detectar turnos menores. Por exemplo, pesos entre 0,05 e 0,25 funcionam bem. Especifique a largura dos limites de controle Por padrão, os limites de controle Minitabs são exibidos 3 desvios padrão acima e abaixo da linha central. Para alterar a largura dos limites de controle para um gráfico, faça o seguinte: Escolha as tabelas de controle Stat gt gt Gráficos ponderados pelo tempo gt EWMA. Clique em EWMA Options e, em seguida, clique na guia Testes. Sob K., altere o valor para 1 ponto mais que K desvios padrão da linha central. Sobre o subgrupo faltante significa mensagem Para criar um gráfico EWMA, você deve ter pelo menos uma observação não-transmissível em cada subgrupo. Se você tiver um subgrupo onde faltam todas as observações, o Minitab exibe um erro e não gera o gráfico. A média móvel ponderada exponencial (EWMA) é uma estatística para monitorar o processo que mede os dados de uma maneira que dá menos e menos Peso para dados, pois eles são removidos no tempo. Comparação do gráfico de controle de Shewhart e das técnicas de controle de EWMA Para a técnica de controle de gráfico de Shewhart, a decisão sobre o estado de controle do processo a qualquer momento, (t) depende apenas da medida mais recente do processo e, claro, O grau de veracidade das estimativas dos limites de controle de dados históricos. Para a técnica de controle EWMA, a decisão depende da estatística EWMA, que é uma média ponderada exponencialmente de todos os dados anteriores, incluindo a medida mais recente. Através da escolha do fator de ponderação, (lambda), o procedimento de controle EWMA pode ser sensível a uma deriva pequena ou gradual no processo, enquanto o procedimento de controle Shewhart só pode reagir quando o último ponto de dados está fora de um limite de controle. Definição de EWMA A estatística que é calculada é: mbox t lambda Yt (1-lambda) mbox ,,, mbox ,,, t 1,, 2,, ldots ,, n. Onde (mbox 0) é a média dos dados históricos (alvo) (Yt) é a observação no tempo (t) (n) é o número de observações a serem monitoradas incluindo (mbox 0) (0 Interpretação do gráfico de controle EWMA O vermelho Os pontos são os dados brutos, a linha irregular é a estatística EWMA ao longo do tempo. O gráfico nos diz que o processo está no controle porque todos (mbox t) se situam entre os limites de controle. No entanto, parece haver uma tendência para cima nos últimos 5 Período. Explicação A volatilidade média móvel ponderada exponencialmente é a medida de risco mais comum, mas vem em vários sabores. Em um artigo anterior, mostramos como calcular a volatilidade histórica simples. (Para ler este artigo, veja Usando a volatilidade para avaliar o futuro Risco.) Utilizamos os dados reais do preço das ações da Googles para calcular a volatilidade diária com base em 30 dias de estoque. Neste artigo, melhoraremos a volatilidade simples e discutiremos a média móvel ponderada exponencialmente (EWMA). Histórico contra a volatilidade implícita Primeiro, vamos p Esta métrica é um pouco de perspectiva. Existem duas abordagens amplas: volatilidade histórica e implícita (ou implícita). A abordagem histórica pressupõe que o passado é o prólogo que medimos a história na esperança de que seja preditivo. A volatilidade implícita, por outro lado, ignora o histórico que resolve para a volatilidade implícita nos preços de mercado. Espera que o mercado conheça melhor e que o preço de mercado contenha, mesmo que de forma implícita, uma estimativa consensual da volatilidade. (Para leitura relacionada, veja Os Usos e Limites da Volatilidade.) Se nos concentrarmos apenas nas três abordagens históricas (à esquerda acima), eles têm dois passos em comum: Calcule a série de retornos periódicos Aplicar um esquema de ponderação Primeiro, nós Calcule o retorno periódico. Isso geralmente é uma série de retornos diários, em que cada retorno é expresso em termos compostos continuamente. Para cada dia, tomamos o log natural da proporção dos preços das ações (ou seja, preço hoje dividido por preço ontem e assim por diante). Isso produz uma série de retornos diários, de u i to u i-m. Dependendo de quantos dias (m dias) estamos medindo. Isso nos leva ao segundo passo: é aqui que as três abordagens diferem. No artigo anterior (Usando o Volatility To Gauge Future Risk), mostramos que sob um par de simplificações aceitáveis, a variância simples é a média dos retornos quadrados: Observe que isso resume cada um dos retornos periódicos, então divide esse total pelo Número de dias ou observações (m). Então, é realmente apenas uma média dos retornos periódicos quadrados. Dito de outra forma, cada retorno quadrado recebe um peso igual. Então, se o alfa (a) é um fator de ponderação (especificamente, um 1m), então uma variância simples parece algo assim: O EWMA melhora a diferença simples. A fraqueza dessa abordagem é que todos os retornos ganham o mesmo peso. O retorno de Yesterdays (muito recente) não tem mais influência sobre a variação que o retorno dos últimos meses. Esse problema é corrigido usando a média móvel ponderada exponencialmente (EWMA), na qual os retornos mais recentes têm maior peso na variância. A média móvel ponderada exponencialmente (EWMA) apresenta lambda. Que é chamado de parâmetro de suavização. Lambda deve ser inferior a um. Sob essa condição, em vez de pesos iguais, cada retorno quadrado é ponderado por um multiplicador da seguinte forma: por exemplo, RiskMetrics TM, uma empresa de gerenciamento de risco financeiro, tende a usar uma lambda de 0,94 ou 94. Neste caso, o primeiro ( Mais recente) o retorno periódico ao quadrado é ponderado por (1-0,94) (94) 0 6. O próximo retorno ao quadrado é simplesmente um múltiplo lambda do peso anterior neste caso 6 multiplicado por 94 5,64. E o peso do terceiro dia anterior é igual (1-0,94) (0,94) 2 5,30. Esse é o significado de exponencial em EWMA: cada peso é um multiplicador constante (isto é, lambda, que deve ser inferior a um) do peso dos dias anteriores. Isso garante uma variação ponderada ou tendenciosa em relação a dados mais recentes. (Para saber mais, confira a Planilha do Excel para a Volatilidade dos Googles.) A diferença entre a simples volatilidade e o EWMA para o Google é mostrada abaixo. A volatilidade simples efetivamente pesa cada retorno periódico em 0.196 como mostrado na Coluna O (tivemos dois anos de dados diários sobre o preço das ações. Isso é 509 devoluções diárias e 1509 0.196). Mas observe que a coluna P atribui um peso de 6, então 5.64, depois 5.3 e assim por diante. Essa é a única diferença entre variância simples e EWMA. Lembre-se: depois de somar toda a série (na coluna Q), temos a variância, que é o quadrado do desvio padrão. Se queremos volatilidade, precisamos lembrar de tomar a raiz quadrada dessa variância. Qual é a diferença na volatilidade diária entre a variância e EWMA no caso do Googles. É significativo: a variância simples nos deu uma volatilidade diária de 2,4, mas a EWMA deu uma volatilidade diária de apenas 1,4 (veja a planilha para obter detalhes). Aparentemente, a volatilidade de Googles estabeleceu-se mais recentemente, portanto, uma variação simples pode ser artificialmente alta. A diferença de hoje é uma função da diferença de dias de Pior. Você notará que precisamos calcular uma série longa de pesos exponencialmente decrescentes. Nós não vamos fazer a matemática aqui, mas uma das melhores características do EWMA é que toda a série se reduz convenientemente a uma fórmula recursiva: Recursiva significa que as referências de variância de hoje (ou seja, são uma função da variância dos dias anteriores). Você também pode encontrar esta fórmula na planilha e produz exatamente o mesmo resultado que o cálculo de longo prazo. A variação de hoje (sob EWMA) é igual a variância de ontem (ponderada por lambda) mais retorno quadrado de ontem (pesado por menos a lambda). Observe como estamos apenas adicionando dois termos em conjunto: variância ponderada de ontem e atraso de ontem, retorno quadrado. Mesmo assim, lambda é o nosso parâmetro de suavização. Um lambda mais alto (por exemplo, como RiskMetrics 94) indica decadência mais lenta na série - em termos relativos, teremos mais pontos de dados na série e eles vão cair mais devagar. Por outro lado, se reduzirmos a lambda, indicamos maior deterioração: os pesos caem mais rapidamente e, como resultado direto da rápida deterioração, são usados menos pontos de dados. (Na planilha, lambda é uma entrada, para que você possa experimentar sua sensibilidade). Resumo A volatilidade é o desvio padrão instantâneo de um estoque e a métrica de risco mais comum. É também a raiz quadrada da variância. Podemos medir a variação historicamente ou implicitamente (volatilidade implícita). Ao medir historicamente, o método mais fácil é a variância simples. Mas a fraqueza com variância simples é que todos os retornos recebem o mesmo peso. Então, enfrentamos um trade-off clássico: sempre queremos mais dados, mas quanto mais dados temos, mais nosso cálculo será diluído por dados distantes (menos relevantes). A média móvel ponderada exponencialmente (EWMA) melhora a variação simples ao atribuir pesos aos retornos periódicos. Ao fazer isso, podemos usar um grande tamanho de amostra, mas também dar maior peso aos retornos mais recentes. (Para ver um tutorial de filme sobre este tópico, visite a Tartaruga Bionica.)
Comments
Post a Comment