Baixar movAv. m (veja também movAv2 - uma versão atualizada que permite a ponderação) Descrição O Matlab inclui funções chamadas movavg e tsmovavg (time-series moving average) na Financial Toolbox, movAv foi projetado para replicar a funcionalidade básica destes. O código aqui fornece um bom exemplo de gerenciar índices dentro de loops, o que pode ser confuso para começar. Eu deliberadamente mantive o código curto e simples para manter esse processo claro. MovAv executa uma média móvel simples que pode ser usada para recuperar dados ruidosos em algumas situações. Ele funciona tomando uma média da entrada (y) em uma janela de tempo deslizante, cujo tamanho é especificado por n. Quanto maior for n, maior a quantidade de suavização do efeito de n é relativa ao comprimento do vetor de entrada y. E efetivamente (bem, tipo de) cria um filtro de freqüência de passagem baixa - veja a seção de exemplos e considerações. Como a quantidade de suavização fornecida por cada valor de n é relativa ao comprimento do vetor de entrada, vale a pena testar valores diferentes para ver o que é apropriado. Lembre-se também de que n pontos são perdidos em cada média se n for 100, os primeiros 99 pontos do vetor de entrada não contêm dados suficientes para uma média de 100pt. Isso pode ser evitado um pouco por meio de empilhamento de médias, por exemplo, o código e o gráfico abaixo comparam uma série de médias de largura de comprimento diferentes. Observe o quão suave 1010pt é comparado a uma única média de 20pt. Em ambos os casos, 20 pontos de dados são perdidos no total. Criar xaxis x1: 0.01: 5 Gerar ruído ruído Reps 4 repag ruido (randn (1, ceil (numel (x) noiseReps)), noiseReps, 1) ruim remodelar (ruído, 1, comprimento (ruído) noiseReps) Gerar ydata noise yexp ( X) 10noise (1: comprimento (x)) médias de Perfrom: y2 movAv (y, 10) 10 pt y3 movAv (y2, 10) 1010 pt y4 movAv (y, 20) 20 pt y5 movAv (y, 40) 40 pt Y6 movAv (y, 100) 100 pt Plot figura trama (x, y, y2, y3, y4, y5, y6) lenda (dados brutos, 10pt média móvel, 1010pt, 20pt, 40pt, 100pt) xlabel (x) ylabel ( Y) título (Comparação de médias móveis) movAv. m código execução função saída movAv (y, n) A primeira linha define o nome das funções, entradas e saídas. A entrada x deve ser um vetor de dados para executar a média em, n deve ser o número de pontos para executar a média sobre a saída conterá a média de dados retornada pela função. Prealocar output outputNaN (1, numel (y)) Encontrar ponto médio de n round do midPoint (n2) O trabalho principal da função é feito no loop for, mas antes de iniciar duas coisas são preparadas. Em primeiro lugar, a saída é pré-alocada como NaNs, isso serviu para duas finalidades. Em primeiro lugar, a pré-alocação é geralmente uma boa prática, pois reduz a manipulação de memória que a Matlab tem que fazer, em segundo lugar, torna muito fácil colocar os dados médios em uma saída do mesmo tamanho que o vetor de entrada. Isso significa que o mesmo xaxis pode ser usado mais tarde para ambos, o que é conveniente para plotar, alternativamente o NaNs pode ser removido mais tarde em uma linha de código (saída de saída (O midPoint variável será usado para alinhar os dados no vetor de saída. N 10, 10 pontos serão perdidos porque, para os primeiros 9 pontos do vetor de entrada, não há dados suficientes para ter uma média de 10 pontos. Como a saída será menor que a entrada, ele precisa estar alinhado corretamente. O MidPoint irá Ser usado para que uma quantidade igual de dados seja perdida no início e no final e a entrada é mantida alinhada com a saída dos buffers NaN criados ao pré-alocar a saída. Para um comprimento de 1: comprimento (y) - n Alcance do índice para levar a média Sobre (a: b) proibição Calcule o significado médio (amidPoint) mean (y (a: b)) end No loop for em si, uma média é tomada em cada segmento consecutivo da entrada. O loop será executado para a. Which is Definido como 1 até o comprimento da entrada (y), menos os dados que serão perdidos (n). Se a entrada for 100 pontos, Ng e n é 10, o loop será executado de (a) 1 a 90. Isso significa que a fornece o primeiro índice do segmento a ser calculado como média. O segundo índice (b) é simplesmente um-1. Então, na primeira iteração, a1. N10. Então b 11-1 10. A primeira média é tomada sobre y (a: b). Ou x (1:10). A média deste segmento, que é um valor único, é armazenada na saída no índice amidPoint. Ou 156. Na segunda iteração, a2. B 210-1 11. Então a média é tomada em x (2:11) e armazenada na saída (7). Na última iteração do loop para uma entrada de comprimento 100, a91. B 9010-1 100 para que a média seja tomada sobre x (91: 100) e armazenada na saída (95). Isso deixa a saída com um total de n (10) valores de NaN no índice (1: 5) e (96: 100). Exemplos e considerações As médias móveis são úteis em algumas situações, mas elas nem sempre são a melhor escolha. Aqui estão dois exemplos em que eles não são necessariamente ótimos. Calibração do microfone Este conjunto de dados representa os níveis de cada freqüência produzida por um alto-falante e registrado por um microfone com uma resposta linear conhecida. A saída do alto-falante varia com a freqüência, mas podemos corrigir esta variação com os dados de calibração - a saída pode ser ajustada em nível para explicar as flutuações na calibração. Observe que os dados brutos são ruidosos - isso significa que uma pequena alteração na freqüência parece exigir uma grande, errática, mudança no nível a ser considerada. Isso é realista Ou isso é um produto do ambiente de gravação. É razoável, neste caso, aplicar uma média móvel que suaviza a curva de freqüência de nível para fornecer uma curva de calibração ligeiramente menos errática. Mas por que isso não é ótimo neste exemplo Mais dados seriam melhores - as calibrações múltiplas correm em média, destruirão o ruído no sistema (desde que sejam aleatórias) e proporcionem uma curva com menos detalhes sutis perdidos. A média móvel só pode se aproximar disso e pode remover alguns mergulhos e picos de freqüência mais altos da curva que realmente existem. Ondas sinusoidais A utilização de uma média móvel em ondas senoticas destaca dois pontos: a questão geral de escolher um número razoável de pontos para realizar a média em excesso. É simples, mas existem métodos de análise de sinal mais eficazes do que os sinais oscilantes em média no domínio do tempo. Neste gráfico, a onda senoidal original é plotada em azul. O ruído é adicionado e plotado como a curva laranja. Uma média móvel é realizada em diferentes números de pontos para ver se a onda original pode ser recuperada. 5 e 10 pontos fornecem resultados razoáveis, mas não eliminem completamente o ruído, onde, à medida que um número maior de pontos começa a perder detalhes de amplitude, à medida que a média se estende por diferentes fases (lembre-se que a onda oscila em torno de zero e significa (-1 1) 0) . Um enfoque alternativo seria construir um filtro de passagem baixa que possa ser aplicado ao sinal no domínio da frequência. Não vou entrar em detalhes, pois vai além do escopo deste artigo, mas como o ruído é uma freqüência consideravelmente maior do que a freqüência fundamental das ondas, seria bastante fácil, neste caso, construir um filtro de passagem baixa do que remover a alta freqüência Ruído. Tenho uma matriz de séries temporais de dados para 8 variáveis com cerca de 2500 pontos (10 anos de sexta-feira) e gostaria de calcular a média, variância, asma e curtose em média móvel. Digamos quadros 100 252 504 756 - Gostaria de calcular as quatro funções acima em cada um dos quadros (time-), diariamente - de modo que o retorno para o dia 300 no caso com 100 dias de quadro seria significante Kurtosis de desvio de variância do período dia 201-dia300 (100 dias no total). e assim por diante. Eu sei que isso significa que eu obteria uma saída de matriz, e o primeiro número de quadros seria NaNs, mas não consigo descobrir a indexação necessária para fazer isso. Perguntou Mar 24 14 às 0:07 Esta é uma questão interessante porque acho que a solução ideal é diferente da média do que é para as outras estatísticas da amostra. Eu forneci um exemplo de simulação abaixo que você pode trabalhar. Primeiro, escolha alguns parâmetros arbitrários e simule alguns dados: Para a média, use o filtro para obter uma média móvel: pensei inicialmente em resolver este problema usando conv da seguinte maneira: Mas como PhilGoddard apontou nos comentários, a abordagem do filtro evita a Necessidade do loop. Observe também que Ive escolheu para tornar as datas na matriz de saída correspondem às datas em X, então no trabalho posterior você pode usar os mesmos índices para ambos. Assim, as primeiras observações do WindowLength-1 no MeanMA serão nan. Para a variação, não consigo ver como usar qualquer filtro ou conv ou mesmo uma soma executória para tornar as coisas mais eficientes, então, em vez disso, eu executo o cálculo manualmente em cada iteração: Poderíamos acelerar as coisas levando ao fato de que já temos Calculou a média móvel média. Basta substituir a linha de loop dentro do acima com: No entanto, duvido que isso faça muita diferença. Se alguém pode ver uma maneira inteligente de usar o filtro ou o conv para obter a variável da janela em movimento, fique muito interessado em vê-lo. Eu deixo o caso de skewness e kurtosis para o OP, uma vez que eles são essencialmente o mesmo que o exemplo de variância, mas com a função apropriada. Um ponto final: se você estivesse convertendo o acima em uma função geral, você poderia passar em uma função anônima como um dos argumentos, então você teria uma rotina média móvel que funcione para escolha arbitrária de transformações. Final, ponto final: para uma seqüência de comprimentos de janela, basta fazer um loop sobre todo o bloco de código para cada comprimento de janela. Sim, a função de filtro é realmente melhor para o meio - mas eu queria fazer isso para várias funções diferentes, não só a média. Acabei de publicar minha resposta porque funcionou para mim e pensei que poderia ajudar alguém também. Ndash Dexter Morgan 15 de abril 14 às 12: 40 Usando MATLAB, como posso encontrar a média móvel de 3 dias de uma coluna específica de uma matriz e adicionar a média móvel a essa matriz Estou tentando calcular a média móvel de 3 dias de baixo Para o topo da matriz. Eu forneci o meu código: Dada a seguinte matriz a e máscara: tentei implementar o comando conv, mas recebo um erro. Aqui está o comando conv que eu tentei usar na 2ª coluna da matriz a: A saída que eu desejo é dada na seguinte matriz: Se você tiver alguma sugestão, eu apreciaria muito. Obrigado Para a coluna 2 da matriz a, eu estou informando a média móvel de 3 dias da seguinte forma e colocando o resultado na coluna 4 da matriz a (I renomeou a matriz a como 39desiredOutput39 apenas para ilustração). A média de 3 dias de 17, 14 e 11 é de 14 a média de 3 dias de 14, 11, 8 é 11, a média de 3 dias de 11, 8, 5 é de 8 e a média de 3 dias de 8, 5, 2 é 5. Não há valor nas 2 linhas inferiores para a 4ª coluna porque a computação para a média móvel de 3 dias começa na parte inferior. A saída 39valid39 não será mostrada até pelo menos 17, 14 e 11. Espero que isso faça sentido ndash Aaron 12 de junho 13 às 1:28 Em geral, isso ajudaria se você mostrar o erro. Neste caso, você está fazendo duas coisas erradas: primeiro sua convolução precisa ser dividida por três (ou o comprimento da média móvel) Em segundo lugar, observe o tamanho de c. Você não pode simplesmente se encaixar em c. A maneira típica de obter uma média móvel seria usar o mesmo: mas isso não se parece com o que você deseja. Em vez disso, você é obrigado a usar algumas linhas:
Comments
Post a Comment